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ABSTRACT 
We propose a method for learning how to use an imaginary 
interface (i.e., a spatial non-visual interface) that we call 
“transfer learning”. By using a physical device (e.g. an 
iPhone) a user inadvertently learns the interface and can 
then transfer that knowledge to an imaginary interface. We 
illustrate this concept with our Imaginary Phone prototype. 
With it users interact by mimicking the use of a physical 
iPhone by tapping and sliding on their empty non-dominant 
hand without visual feedback. Pointing on the hand is 
tracked using a depth camera and touch events are sent 
wirelessly to an actual iPhone, where they invoke the corre-
sponding actions. Our prototype allows the user to perform 
everyday task such as picking up a phone call or launching 
the timer app and setting an alarm. Imaginary Phone there-
by serves as a shortcut that frees users from the necessity of 
retrieving the actual physical device. 

We present two user studies that validate the three assump-
tions underlying the transfer learning method. (1) Users 
build up spatial memory automatically while using a physi-
cal device: participants knew the correct location of 68% of 
their own iPhone home screen apps by heart. (2) Spatial 
memory transfers from a physical to an imaginary inter-
face: participants recalled 61% of their home screen apps 
when recalling app location on the palm of their hand. 
(3) Palm interaction is precise enough to operate a typical 
mobile phone: Participants could reliably acquire 0.95cm 
wide iPhone targets on their palm—sufficiently large to 
operate any iPhone standard widget.  
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Figure 1: This user operates his mobile phone in his 
pocket by mimicking the interaction on the palm of 
his non-dominant hand. The palm becomes an Im-
aginary Phone that can be used in place of the ac-
tual phone. The interaction is tracked and sent to 
the actual physical device where it triggers the cor-
responding function. The user thus leverages spa-
tial memory built up while using the screen device. 
We call this transfer learning. 

INTRODUCTION 
Imaginary interfaces were proposed as a means for ena-
bling pointing input on screen-less mobile devices [5]. 
With their hands tracked by a chest-worn camera, users of 
imaginary interfaces point and draw in the empty space in 
front of them. Their non-dominant hand, held up in an “L-
gesture”, forms the origin of a 2D coordinate system. This 
visual reference allows users to acquire targets using coor-
dinates of the style “two thumbs up and three index fingers 
to the right”. This allowed for reliable acquisition of targets 
measuring 4.8 × 4.3cm. 

However, if we try to transfer this approach to multi-widget 
imaginary interfaces, we obtain an interaction style remi-
niscent of a voice menu: the system would have to read out 
choices such as “For mail, select one thumb right, two 
index fingers up. For weather…” Having to listen to such a 
list makes interaction slow and frustrating [26]. Extended 
use would eventually allow users to select widgets without 
listening to the choices anymore (to dial ahead [18]), but 
since real-world interfaces can hold dozens of widgets, 
learning all the widget locations can take a long time, leav-
ing users stuck with the voice-menu style of interaction. 
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Transfer learning 
We propose an alternative approach which we call transfer 
learning. By designing imaginary interfaces that mimic the 
layout of a mobile device that users are already familiar 
with, users are able to operate an imaginary interface by 
mimicking their use of the corresponding real-world screen 
interface (Figure 1). As we demonstrate in this paper, this 
allows users to apply the spatial knowledge gathered on the 
physical device to an imaginary interface. We will refer to 
this by saying that the spatial knowledge transfers from the 
physical device to the imaginary interface. 

CONTRIBUTION 
This paper has two main contributions: (1) the concept of 
learning imaginary interfaces by transfer and as an example 
of that concept (2) our Imaginary Phone prototype. We also 
present two users studies that serve to validate the underly-
ing principles of transfer learning and the Imaginary Phone 
prototype. 

THE IMAGINARY PHONE 
We start by illustrating the concept with a prototype we call 
Imaginary Phone: an imaginary interface that offers a 
shortcut interface for an iPhone (Figure 2). Instead of re-
trieving and operating the physical phone, users mimic the 
interaction by pointing and dragging on their empty hand. 
Our prototype tracks the pointing interaction between the 
two hands (see Prototype and Tracking Hardware) and 
sends the touch position to a physical mobile device, here 
an iPhone located in the user’s pocket. The physical device 
supplies feedback to operations via the built-in speaker or a 
wireless headset worn by the user. 

Walkthrough 
Users can choose, either because it is necessary or just 
convenient, to use their Imaginary Phone for various quick 
tasks instead of retrieving the physical device from their 
pocket. Here is an example scenario: 

 
Figure 2: Walkthrough of making a call with the Im-
aginary Phone: (a) unlock with a swipe, (b) enter 
your pin, (c) select the ‘phone’ function and (d) se-
lect the first entry from the speed dial list. 

Karl is cleaning up the dishes and receives a phone call. 
Since his hands are wet, he cannot take the call on his phys-
ical phone and uses the Imaginary Phone instead. He an-
swers the call by swiping on his hand, which is the same 
interaction he would have performed on the physical 
phone. The call is from a friend that wants to go jogging

tomorrow morning. Karl ends the call by touching the loca-
tion of the ‘End’ button on this wet palm then launches the 
‘Clock’ application. From here he selects the location for 
“Alarms” and enables his early morning alarm to ensure he 
gets up in time. 

Later, while watching TV, Karl wants to order food but 
cannot find his phone in his pockets. Not wanting to get up 
from the couch and search, he chooses the Imaginary Phone 
to place a call as shown in Figure 2. 

RESULTING INTERACTION MODEL AND BENEFITS 
Interaction with an imaginary interface that is learned by 
transfer, such as by Karl in the previous scenario, is possi-
ble only because the user has been using the physical 
screen device over a period of time and has learned the 
spatial locations of the necessary user interface elements. 
This happened inadvertently—without extra effort users 
become increasingly familiar with the locations of such 
widgets over time. The spatial knowledge they gained from 
using the physical device can be transferred to an imagi-
nary interface. 

At some point, the user has performed an operation often 
enough to know the locations and sequence of touches 
needed to execute it and he can begin to perform that op-
eration on the imaginary version of the interface. This will 
occur one operation at a time, with the simpler and more 
common operations being transferred earlier. Therefore, 
microinteractions [3] will generally be the first to transition 
to an imaginary interface. 

As a result, this transfer model essentially turns the screen 
device into a training mode for the imaginary interface—
or, depending on your perspective, the imaginary interface 
into an expert mode for the screen device. Accordingly, the 
benefit of the transfer model depends on the use case: 

For users of physical devices, the main benefit of the trans-
fer model is that it allows mobile phone users to instead 
perform their interactions on an imaginary interface. This 
saves these users the effort of retrieving the physical de-
vice, because the shorter the interaction, the greater the 
relative speedup. The latter makes the transfer model par-
ticularly valuable for microinteractions, such as dismissing 
an alarm dialog. Since the transfer model allows users to 
leverage their experience with the physical device, users 
can redeem these benefits right away, without the need for 
a separate training period. 

For users of imaginary interfaces (i.e., users that only have 
access to the imaginary interface), the transfer model re-
places the voice menu-style training period. Offloading the 
learning phase to a screen device, (1) allows learning to 
take place in a visual and inherently parallel way and, (2) 
unlike when using a voice menu-style interface, interaction 
is fast during training, lowering the entrance barrier to 
learning imaginary interfaces. 
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PROTOTYPE AND TRACKING HARDWARE 
Our prototype senses touch using a depth camera and, after 
processing, injects touch events into a standard iPhone. 

Sensing hardware 
While imaginary interfaces as originally proposed required 
an infrared camera [5], interaction on the palm opens up 
other sensing options, such as gloves [11], Skinput [6] or 
depth cameras. We chose to use a time-of-flight depth 
camera, because unlike other approaches, it supports inter-
action with empty hands and allows for dragging interac-
tion. Although currently mounted on a tripod and looking 
over the user’s shoulder, we imagine future depth cameras 
to be small enough to be mounted on the chest as originally 
proposed for imaginary interfaces [5]. 

Our choice to use a time-of-flight camera can lead to occlu-
sion issues (e.g., back of the hand occluding the pointing 
finger), but it does enable our prototype to work in all light-
ing conditions, including outside in direct sunlight (as 
shown in Figure 3b-c), unlike standard infrared cameras or 
Kinect [14]. Our depth camera is a PMD[vision] CamCube 
that provides frames at 40Hz with 200 × 200px resolution. 

 
Figure 3: (a) We track input using a time-of-flight 
depth camera (PMD[vision] CamCube), which al-
lows our Imaginary Phone prototype to also work in 
direct sunlight (b-c). 

Algorithm 
In order to extract the two hands from the input image, we 
pre-process the raw depth image as shown in Figure 4. We 
first find the closest pixels in the depth image (a), remove 
all pixels with relative depth values of more than 30cm, and 
smooth all remaining values. To determine the number of 
visible hands, we create a depth histogram of the masked 
image (c) and calculate the number of strong peaks (indi-
cated by green squares in Figure 4c). Based on the two 
distributions in the histogram, we classify pixels in the 
depth image (d) to obtain the masks for the pointing 
hand (e) and the reference hand’s palm (f). 

To determine if and where the user is touching the palm, 
we pick a location inside the pointing hand (Figure 4e) and 
fill using a small tolerance value, eventually walking 
“down” the finger towards the reference hand (f). If the fill 
does not reach a depth value that belongs to the reference 
hand while staying within the tolerance value, we infer no 
touch. If it does, we infer that the finger is touching.  

Due to the limited resolution of the depth camera, we can-
not find the precise end of the touching finger. Instead, we 
determine the touch location from the end of the point mask 
offset by a small vector in the direction of the finger (green 
square in Figure 4g). 

The width of the reference frame for touch events is set to 
the width of the fingers excluding the thumb (see Design 
Discussion for other possibilities). We first calculate the 
width from the top 3cm of the hand to exclude the thumb 
(the depth values allow translating this into pixels meas-
urements) and draw a frame around those values. We then 
set the height of this reference frame to match an aspect 
ratio of 1.5. The final frame is shown in Figure 4f and g. As 
this reference frame is subject to noise if the pointing hand 
is present, we update the reference frame only if one hand 
is visible and, upon sensing both hands, adapt it by tracking 
the reference hand. 

 
Figure 4: In processing the (a) raw depth image, our 
system (b) thresholds and (c) calculates a depth 
histogram to (d) segment the image into two masks: 
(e) pointing hand and (f) reference hand. From that 
we calculate (g) the final touch position and refer-
ence frame. 

As the computed raw locations are subject to strong noise, 
we use hysteresis to maintain touch states (touch/no touch) 
and smooth input coordinates, which enables smooth drag-
ging or even free-form drawing. This also prevents pro-
cessing inadvertent input, such as a hand waving by the 
camera. Our system supports all of the same single-touch 
interactions that are possible on the phone: swiping, scroll-
ing, tapping, dragging, drawing, etc. 

After determining touch position on the palm, our proto-
type relays touch input to the iPhone. A custom-written 
input daemon on the iPhone receives the smoothed events 
via TUIO over WiFi and injects them into the event stream 
of the iPhone. The VoiceOver [1] accessibility mode (built 
into Apple iOS 4.0 and greater) provides auditory confir-
mation of actions. The unlock gesture on the iPhone to 
prevent inadvertent touch input additionally helps our sys-
tem to disregard spurious input through gestures that hap-
pen naturally when not using the system. 

RELATED WORK 
Imaginary Phone draws on several areas of related work: 
wearable and mobile computing, microinteractions, sensing 
approaches for using the hand as an input surface and imag-
inary interfaces. 

Wearable and mobile computing 
Like Imaginary Phone there is a wide range of wearable 
and mobile computing systems that allow the user to inter-
act without holding a device in their hands. Notably, 
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BodySpace [20] assigns functions to position on the body, 
Abracadabra [7] senses movement of a magnet placed on 
the finger tip from a wrist-mounted display and GesturePad 
[19] provides a touch sensitive pad embedded into clothing. 

Microinteractions 
Imaginary Phone is particularly well suited for supporting 
microinteractions—the quick mobile device interactions 
that characterize the dominant interaction mode for mobile 
phones [3]. Ashbrook et al. [2] showed that it takes over 4.5 
seconds on average just to begin an interaction with a mo-
bile phone stored in your pocket. This is a substantial over-
head for an interaction that overall only lasts a few se-
conds [17]. 

Using the hand as input surface 
Unlike the original imaginary interfaces, this paper propos-
es using the palm of the non-dominant hand as an interac-
tion surface. Several projects, such as Haptic Hand [10], 
Sixth Sense [15] and Brainy Hand [21], also propose using 
the palm. 

There are a few technical approaches to sensing touch on 
the surface of the hand. First, a designer could place sens-
ing material on the palm. For example, KITTY [11] covers 
parts of the hand with electrical contacts that, when touched 
with another contact, register a touch event at a specific 
location. Although this method could produce highly relia-
ble and perhaps high-resolution input, the fact that the user 
must wear something over their hand prohibits the general 
use of this approach. 

Second, a system could observe the physical manifestations 
of touch from afar. For example, GestureWrist [19] senses 
hand postures by observing the changes in the shape of the 
wrist and Skinput [6] senses taps on the hand and forearm 
by measuring the different patterns of vibrations that travel 
up the arm. 

Finally, computer vision has been used for a wide range of 
hand sensing [23] but we are unaware of any computer 
vision based approach that allows the user to use their un-
instrumented finger to select a position on their bare hand. 
This, perhaps, has not been done previously because of the 
difficulties of separating the two hands. Using a depth 
camera allowed us to segment both hands and sense touch 
on the surface of the palm. 

Imaginary interfaces  
Imaginary interfaces are spatial, non-
visual interfaces [5]. They were orig-
inally proposed as free-hand interface 
based on a finger and thumb coordi-
nate system as shown in Figure 5. 

Other researchers have proposed
interfaces that are non-visual for 
controlling input (e.g., Mouse-less 
[16], Virtual Shelves [12]) or describ-
ing shapes and objects (e.g., Spatial
Sketch [25], Data Miming [9]). 

 

Figure 5: The finger 
and thumb coordi-
nate system for the 
original imaginary
interfaces [5]. 

MAKING IT WORK: THE THREE REQUIREMENTS  
The Imaginary Phone is based on the concept of transfer 
learning that can be broken down into a chain of three logi-
cal steps (Figure 6), each of which depends on one assump-
tion: 

1) Spatial memory: while using a screen device, users inad-
vertently learn where user interface elements are located. 

2) Transfer: with an appropriate mapping, spatial memory 
acquired on a physical device can be recalled on an imagi-
nary interface. 

3) Accuracy: the imaginary interface allows users to point 
with sufficient accuracy to provide the pointing accuracy 
required by the associated physical device. 

 
Figure 6: Our design is based on three assump-
tions: (1) using a physical device builds spatial 
memory, (2) the spatial memory transfers to the im-
aginary interface and (3) users can operate the im-
aginary interface with the accuracy required by the 
physical device. 

These three assumptions inform the design of transfer-
based imaginary interfaces and in particular Imaginary 
Phone. Next, we support these assumptions with a design 
discussion and empirical results from two studies. 

DESIGN DISCUSSION 
Assumption 2 (transfer) and 3 (accuracy) depend heavily 
on the design of the imaginary interface. Here we present 
the design alternatives we explored and explain the ra-
tionale for our choices.  

Pointing in empty space vs. on the palm 
The original imaginary interface lets users point in empty 
space, framed by an L-gesture (Figure 7a). When designing 
Imaginary Phone, we moved the interaction to the palm of 
the non-dominant hand (Figure 7b). 

While the original imaginary interfaces concept, based on 
empty space, offered a much larger interaction area, the 
palm-based version offers a benefit we consider essential 
for transfer learning: memorable landmarks. The findings 
in [5] indicate that proximity to landmarks—in that case the 
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tip of index finger and thumb—helps acquire targets; yet, 
the empty space design is all but void of landmarks. The 
palm, in contrast, is full of landmarks, many of which even 
have commonly known names, allowing users to create 
symbolic associations. The obvious match between four 
fingers and four-column layouts in, for example, the home 
screen, made it clear that the palm was the better platform 
for Imaginary Phone. 

 
Figure 7: (a) The original Imaginary Interface had 
users interact in empty space framed by the L-
gesture. (b) In this paper, we moved the interaction 
onto the non-dominant hand, which conceptually al-
so allows (c) one-hand interaction. 

As a side effect, on the palm, a tap is established by the 
physical contact, very much like on any touch screen. This 
results in four additional benefits: 

1. Stabilize finger: physical contact between hands stabiliz-
es the finger during pointing. 

2. Eliminate pinching: most users are more experienced 
and thus skilled with tapping than with the pinching gesture 
required by the original empty space version. 

3. Spatial haptic feedback: during tapping, the sensation on 
the non-dominant hand reflects the acquired location, 
providing an additional cue for target location. 

4. Eliminate parallax: when targeting in empty space, the 
finger is free to move in 3D and is thus often outside the 
2D interaction plane of the imaginary interface. Mapping 
the finger position to the desired 2D point on the plane, 
however, is subject to ambiguity and pointing error because 
we cannot know how the user conceptualizes this projec-
tion: orthogonal projection, line-of-sight, etc. Pointing on 
the palm avoids this problem. 

While it is hard to compare the overall number of addressa-
ble locations in empty space to the palm (with empty space, 
pointing resolution decreases with distance from the refer-
ence hand [5]) the combination of the four factors listed 
above increases the pointing resolution on the palm to the 
point where it provides the resolution required to address 
widgets on an iPhone (see User Study 2). Also, the size of 
the palm matched the physical device much better than the 
large low-resolution empty space, whose large size could 
prove to be socially awkward. 

Finally, interaction on the palm also allows for a one-
handed version (as in PinchWatch [13]), illustrated in Fig-
ure 7c. This would allow for even more immediate use, 
albeit with less interaction space. 

Defining the mapping from palm to physical screen 
Palm and device screen generally do not have the same size 
and shape, requiring us to define a mapping.  

Our prototype uses a simple regular grid mapping as illus-
trated by Figure 8b. This layout allows users to simply 
imagine the bounding rectangle of their hand and use that 
to find the position. Even more importantly, the layout is 
generic, thus applies to any interface including free form 
input, such as sketching and handwriting. 

 
Figure 8: Mapping (a) the iPhone home screen 
mapped to (b) a regular grid, (c) a semi-regular grid 
where the columns are mapped to fingers and 
(d) arbitrary mapping to the best landmarks. 

The more specific layouts (Figure 8c and d) should allow 
for increased pointing accuracy by making even better use 
of landmarks, but could cause confusion when trying to 
operate controls that assumed a rectilinear screen (Figure 
9). Highly specialized layouts (Figure 8d) are impractical, 
as they require users to relearn mappings on a per-
application basis. 

 

Figure 9: (a) Non-regular 
mappings fail when placing 
sliders and list items that 
span the width of the screen. 
(b) The regular grid works 
fine. 

Our Imaginary Phone prototype uses the “4-finger scale” as 
shown in Figure 10c. This maps input from the larger palm 
to a smaller screen size, resulting in a scale factor of ap-
proximately 1.86. Unlike the more obvious 1:1 mapping 
(Figure 10b) the scaling allows us to include additional 
landmarks and thus increase the effective pointing accuracy 
on the mobile device. We could continue this logic by in-
creasing the scale to include the whole hand but at the ex-
pense of leaving a large amount of the interaction space off 
the surface of the hand—a space devoid of landmarks. 

 
Figure 10: (a) The screen on a current 5 × 7cm mo-
bile devices (b) maps to approximately three fingers 
of an adult male hand. (c) Using a scaled mapping 
allows us to map to four finger or (d) the whole 
hand. The iPhone and hands are to scale. 

The four-finger scale works best with interfaces laid out in 
four column layouts, such as the iPhone home screen 
(Figure 11a). Other layouts, such as a seven-column month 
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calendar (Figure 11b) could be mapped by assigning every 
other day to the space between two fingers, which also 
make good landmarks. Similarly, we could map three-
column layouts (Figure 11c) to only the spaces between 
fingers. 

 
Figure 11: iOS screens laid out in (a) four, 
(b) seven, (c) and three column grids. 

Some mappings, such as the semi-regular grid (Figure 8c) 
are simple enough to communicate with a diagram (as we 
did in Study 1) but with others, such as the regular grid 
(Figure 8b), it is not clear how user interface elements map 
to specific features on the user’s hand. Figure 12 shows an 
approach we explored to teach users the regular grid map-
ping. If we have access to the device’s wallpaper, we dis-
play a photo of the user’s hand as wallpaper. During use 
users now learn not only target locations but also the map-
ping from a widget to its location on the user’s palm. This 
design allowed us to minimize learning time in Study 2. 

 

Figure 12: A photo of the 
user’s hand as wallpaper
helps learn the association
between widget and location
on the user’s palm. 

The arguments just presented form logical support for the 
three assumptions that transfer learning is based on. The 
following two studies complement this discussion with 
empirical results. 

STUDY 1: RECALL YOUR HOME SCREEN LAYOUT AND 
TRANSFER IT TO YOUR HAND 
This first study investigated the first two of the three as-
sumptions behind transfer learning as illustrated in Figure 
6. First, we wanted to know how much spatial memory 
users build up through the regular use of a touch-screen 
mobile device. Second, we wanted to know how much of 
that knowledge transfers to the hand. Together, these num-
bers would tell us how useful an Imaginary Phone could be. 
We did not test a specific hypothesis in this study. We were 
purely interested in participants’ recall abilities. 

To investigate this we asked daily iPhone users to recall the 
locations of the (up to) twenty home screen app icons of 
their own iPhone from memory and without feedback. In a 

between-subjects design, half of the participants recalled 
and communicated their choice by pointing to a non-
functional iPhone prop (phone prop condition Figure 13a) 
while the other half recalled locations by pointing to the 
palm of their own non-dominant hand, using a predefined 
scheme of how buttons on their iPhone would map to loca-
tions on their palm (palm condition, Figure 13b). 

Research questions 
The goal of this study was to determine how many app 
locations had been learned as a side effect of regular use 
and how much of that knowledge would successfully trans-
fer, using the supplied mapping, to the participants’ palm. 
Participants in the palm condition would not only have to 
recall, but also map locations onto their hand. The differ-
ence between the two conditions would serve as an indica-
tion for how much information is lost in transfer. We also 
expected the frequency of use to correlate with the user’s 
ability to recall. 

Task and procedure 
After we seated participants, they unlocked their phone 
and, without looking at the screen, handed it over to us. 
Participants in the palm condition were now taught the 
semi-regular-grid mapping scheme (see Figure 8c in the 
Design Discussion). This preparation took less than a mi-
nute for all participants. 

The experimenter then conducted a series of trials, one for 
each app on the participant’s home screen. For each trial, 
the experimenter picked a different app and cued the partic-
ipant with the app’s name and a description of the app 
icon’s visual appearance. 

Participants responded by pointing to the app’s presumed 
location within the 4 × 5 icon home screen. Participants in 
the phone prop condition pointed to cells displayed on a 
printed prop of an iPhone (unlabeled all-white icons in 
Figure 13a). Participants in the palm condition instead 
pointed to a location on their own non-dominant hand 
(Figure 13b).  

In both conditions, the experimenter determined what loca-
tion the participant was pointing to by observing them 
point. While we did not measure pointing accuracy directly 
(we investigated that in Study 2), the experimenter had no 
difficulty identifying which targets participants referred to. 

 
Figure 13: Study 1 task: (a) participants in the 
phone prop condition recalled app locations by 
pointing to an empty iPhone prop, (b) participants in 
the palm condition pointed on their own non domi-
nant hand. 
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After completing all trials, participants classified each of 
their home screen apps as used either daily (at least once a 
day), weekly (at least once a week) or rarely (less than once 
per week). 

Finally, participants filled out a demographic questionnaire. 
All participants completed the study in 15 minutes or less. 

Participants 
We recruited 12 participants (5 female) in the cafeteria of 
our institution. Participants were on average 23.6 years old 
(SD=4.2) and two were left-handed. All participants were 
daily iPhone users and carried it with them. They were 
given a small gift for their time. 

Results 
The twelve participants had on average 18.4 apps on their 
home screens and recalled each only once, for a total of 221 
app recall trials.  No outliers were removed but three trials 
were discarded (leaving 218 for analysis) because of errors 
by the experimenter. Figure 14 shows the responses from 
all participants. 

 

Figure 14: Study 1 raw results: each of the 12 
rounded rectangles represents one participant’s 
phone home screen. Each black (wrong) or white 
(correct) square represents a specific home screen 
app. Percentages indicate the participant’s recall 
rate.  

Our main finding was that participants, on average, correct-
ly positioned 64% of the apps on their phone (68% for 
phone prop, 61% for palm). The success rate was higher for 
apps used daily (71% for phone prop, 80% for palm). T-
tests did not show any significant differences. When they 
were wrong, 45% of guesses were only a single cell off, 
suggesting that participants had some spatial knowledge. 
Figure 15 shows these aggregated statistics. 

Overall the frequency of use of an application correlated 
with percentage correct (Pearson’s r3=0.998, p=0.043) but 
we found no trends relating performance to age, gender or 
duration of phone ownership.  

 
Figure 15: Study 1 aggregated results: percentage 
correct by use frequency (+/- std. error of the 
mean). The chart is stacked with mean percentages 
for incorrect responses separated by how far (in 
Manhattan distance) they were wrong by. 

Discussion 
Since none of the participants were aware of the task or 
project before the study, a mean recall rate of 64% of their 
home screen apps can only be explained as a side effect of 
regular phone use. This supports the first of our three main 
assumptions behind the transfer learning approach. 

Note that the recall rates observed with these untrained 
users effectively form a lower bound as actual users of an 
Imaginary Phone would have an incentive to actively learn 
locations. 

We did not find a significant difference between recall on 
phone prop and palm conditions. However, while the lack 
of significance is expected given the small number of par-
ticipants and high variation, the fact that both numbers are 
in the same range suggests that the loss of spatial 
knowledge during transfer cannot be too large. This is also 
supported by our observations—participants seemed to 
recall on their hands almost as easily as on a phone. This 
supports the second of our three main assumptions: spatial 
knowledge can indeed transfer to the hand. 

STUDY 2: TARGETING ON ARBITRARY LAYOUTS 
Our goal of this study was to verify our design’s third main 
assumption—that a palm-based imaginary interface, such 
as Imaginary Phone, supports sufficient pointing accuracy 
to operate the typical functions of a mobile phone. In par-
ticular, we wanted to know whether this interaction style 
would allow users to operate the widget sizes common to 
today’s touch devices. If so, imaginary interfaces that mim-
ic touch devices would become viable. To be able to com-
pare palm interaction to previous work [5] (that used a 
different sensing mechanism) we included the traditional 
empty space imaginary interface (Figure 16a) as a control. 

In order to evaluate the concept rather than the current 
condition of our Imaginary Phone prototype (whose touch 
resolution is limited by the depth camera’s 200 × 200px 
resolution) we conducted this study using “perfect” track-
ing, i.e., post-hoc analysis of high resolution photos. 
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In contrast to Study 1, where targets were directly associat-
ed with hand landmarks, we chose to conduct this experi-
ment with randomly placed targets. Therefore these results 
show performance worse than with a layout designed to 
align widgets with landmarks on the hand. 

(Imaginary) interfaces tested in this study 
In the empty space control condition participants targeted in 
the space framed by their thumb and index finger (Figure 
16a) and in the palm condition participants targeted on 
palm of their hand (Figure 16b). The size of the tracked 
area was kept constant for both conditions.  

To shorten training, we used the wallpaper approach de-
scribed earlier in the design section (see Figure 12) where 
participants’ own hand was displayed behind the targets. 
With this approach, they were able to readily associate the 
arbitrary target locations with landmarks on their own 
hand. 

 
Figure 16: Study 2 apparatus: (a) empty space 
condition and (b) palm condition. 

Task and procedure 
During each trial, participants targeted three locations at a 
time (in pilots we determined participants were able to 
remember three locations easily). Participants learned the 
three target locations by repeatedly targeting them on a 
screen device (here an iPod Touch) until they were able to 
reliably target with at least 5mm accuracy on the touch 
screen. Participants were then prompted repeatedly with a 
target number and responded by recalling the respective 
position in empty space or on their palm depending on the 
condition. 

There were two independent variables: Target Location (4 
groups of 3 locations) and Interface (empty space vs. palm). 
As a within-subjects design, half of the blocks used the 
empty space interface and the other half the palm interface. 
The order of interfaces was counterbalanced across partici-
pants. Participants recalled and touched each target five 
times in random order; each participant completed four 
such blocks (two for each interface) with each block featur-
ing a different set of 3 targets. Together, the experiment 
consisted of 12 participants × 2 interfaces × 2 blocks × 3 
targets × 5 reps = 720 trials. Each participant completed the 
experiment session within 30 minutes. 

Apparatus 
We used a DSLR camera to record participants’ touch 
interactions (Figure 16). We extracted touch locations from 

the high-resolution photos on a millimeter level, which kept 
tracking errors to a minimum. 

Participants 
12 participants (1 female) were recruited at our institution. 
They were between the ages of 19 and 28 (M=21.8, 
SD=2.56). All participants were right-handed. They were 
given a small gift for their time. 

Research question and hypothesis 
The main purpose of this study was to determine the accu-
racy of the palm interface. If we should find that the mini-
mum button size of the hand interface is comparable to 
studies of conventional touch (such as the 15mm buttons 
from [8]) that would indicate that the transfer concept was 
viable. 

Reflecting our earlier discussion on the properties of the 
palm interface, we hypothesized that the palm interface 
would allow participants to target with higher accuracy 
than in the empty space condition. 

Results 
We discarded 7 bad trials where no data was recorded and 
15 outlier trials where the touch location was greater than 3 
standard deviations away from the centroid. This left us 
with 720-7-15=698 trials in our analysis. To allow for 
comparison between participants, we normalized all hand 
sizes so that the index finger was 7.25cm long (the popula-
tion’s average index finger length [4]). This length corre-
sponds to 3.90cm in the iPhone, leaving us with a scaling 
factor of 1.86. 

 
Figure 17: Study 2 results: all touches from all par-
ticipants for (left) the empty space condition and 
(right) the palm condition. Plus signs indicate actual 
target positions. Ovals represent the bivariate nor-
mal distribution of selections per participant per tar-
get. 

Figure 17 shows the raw data where each ellipse contains 
the 5 trials from one participant for one target. For the 
remaining analysis, we decomposed the targeting error 
(distance between target and acquired location) into sys-
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tematic error (offset) and noise (minimum button size), as 
suggested by [8]. We assume one overall offset, instead of 
per user offsets. This is a more liberal estimate of touch 
accuracy, because it is not calibrated per user. 

On average, the diameter of a circular minimum button on 
the empty space interface is 27.9mm (SD=0.32) and 
17.7mm (SD=0.22) on the palm interface. This difference 
is statistically significant (t11=2.912, p=0.014, Cohen’s 
d=0.84). 

When input is mapped back to the iPhone screen, all inter-
actions are scaled down by a factor of 1.86 (the ratio of 
hand size to screen size). This in turn affects minimum 
button sizes—they now shrink to 15mm for the empty 
space condition and 9.5mm with the palm condition. 

Discussion 
As hypothesized, the palm interface was more accurate 
than the traditional empty space interface. This supports the 
reasoning presented earlier (see Design Discussion) and 
also confirms our choice to build the Imaginary Phone with 
a palm-based interface. 

Also unsurprisingly (because we offered no feedback), the 
raw accuracy (i.e., before scaling down) obtained with the 
two imaginary interfaces is worse than the accuracy values 
obtained by other researchers with modern touchscreens. 
They report, using different study conditions, minimum 
button sizes of 15.0mm [8], 11.5mm [24] and 10.5mm [22]. 
The touch distributions we measured in this study indicate 
minimum button sizes of 9.5mm when scaled to fit the 
phone, which are comparable to a touch device. This, of 
course, is due to the palm offering a bigger input surface 
than the actual device, such that input errors shrink as input 
locations are mapped back to the device. In particular, this 
provides the necessary accuracy to acquire standard widg-
ets on current touch devices, such as the iPhone, therefore 
making the transfer concept viable. 

That said, these results were obtained with a tracking 
mechanism more accurate than what our current prototype 
can deliver. Consequently, these results could be consid-
ered a theoretical minimum for feedback-less targeting on 
the palm. 

SUMMARY OF THE TWO STUDIES 
Summarizing the two studies reported above, we find that 
all three of the assumptions of the transfer learning model 
stated earlier have support. 

(1) Users indeed build up spatial memory automatically 
while using a physical device: participating iPhone users 
knew the correct location of 68% of their own iPhone home 
screen apps by heart. 

(2) Spatial memory indeed transfers from physical to imag-
inary interfaces: participants recalled the location of home 
screen apps with 61% accuracy when pointing on the palm 
of their hand. 

(3) Pointing on the palm is precise enough to allow operat-
ing the device: using accurate tracking, participants can 
reliably acquire targets less than 17.7mm in diameter on 
their palm. Mapping these back to the smaller iPhone in-
creases precision to 9.5mm button sizes. This is sufficient 
to operate standard widgets on today’s mobile touch devic-
es. 

We conclude that the transfer model is viable, even though 
full accuracy will not be redeemed until higher resolution 
tracking equipment becomes available. 

CONCLUSIONS 
In this paper, we presented a method of learning imaginary 
interfaces based on transfer and illustrated the concept with 
our Imaginary Phone prototype. 

From the perspective of a mobile device user, the main 
benefit of imaginary interfaces based on transfer learning is 
that it saves users the effort for retrieving the device. 

 
Figure 18: (a) Early mobile devices required users 
to retrieve a stylus and the device. (b) Current touch 
devices require retrieving only the device. (c) Imag-
inary interfaces do not require retrieving anything. 

What is promising is that a similar transition has happened 
before, as illustrated by Figure 18. While early devices 
required users to retrieve device and stylus (e.g., PalmPi-
lot), usage eventually transitioned to touchscreen-based 
devices. This move took place even though stylus input is 
in many ways superior to touch input—it offers higher 
precision (no fat finger problem [22, 8]). 

At the expense of losing even more precision and essential-
ly limiting interaction to microinteractions, systems like the 
Imaginary Phone have the potential to offer even more 
convenience, namely there is no need to retrieve the device 
anymore. While hardly viable on its own, we argue that the 
combination of an imaginary interface and a physical mo-
bile device is an intriguing form factor. 

As future work, transfer learning could be applied to a 
broader range of devices, such as remote controls and in-
strument panels. In particular, it would be interesting to 
investigate if the transfer learning principle can be applied 
to such devices (that have a strong tactile component) ra-
ther than the visual interface as we have shown here. 
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